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Abstract

Macroeconomists construct impulse responses using many competing time series mod-

els and different statistical paradigms (Bayesian or frequentist). We adapt optimal

linear prediction pools to efficiently combine impulse response estimators for the ef-

fects of the same economic shock from this vast class of possible models. We thus

alleviate the need to choose one specific model, obtaining weights that are typically

positive for more than one model. Three Monte Carlo simulations and two monetary

shock empirical applications illustrate how the weights leverage the strengths of each

model by (i) trading off properties of each model depending on variable, horizon, and

application and (ii) accounting for the full predictive distribution rather than being

restricted to specific moments.
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1 Introduction

Impulse responses are a key tool in macroeconomists’ arsenal to trace out the effects of struc-

tural shocks on aggregate quantities and prices. When estimating these impulse responses,

economists have a wide range of options. For example, in the space of purely statistical

models, a researcher can choose, between local projections (LPs) and vector autoregressions

(VARs), Bayesian and frequentist methods, and different specifications. Naturally, each

choice has its own drawbacks and benefits. It is well known that these choices can generate

significantly different results (see Ramey (2016) for several leading examples). While there

is a growing literature discussing conditions under which one approach might be preferred

over another (Stock and Watson, 2018; Herbst and Johannsen, 2020; Plagborg-Møller and

Wolf, 2021), in practical applications many of the conditions are likely difficult to verify.

In this paper, we introduce a method to average impulse responses from different estima-

tors by extending the optimal prediction pools studied by Geweke and Amisano (2011) and

Hall and Mitchell (2007).1 In particular, we compute the optimal weights that maximize

the weighted average log score function for forecasts conditional on the structural shock of

interest. The only input required is a set of forecast densities that trace out the model-

specific effects of the shock of interest. The individual impulse responses can be based upon

any method that delivers such a conditional forecast density for a given variable at a given

horizon.

Our approach is designed to appeal to empirical macroeconomists, who may find it diffi-

cult to choose between different methods for estimating impulse responses. LPs have become

popular because they allow for introduction of extraneous variables in a straightforward man-

ner. At the same time, confidence intervals of LP-based responses tend to be wide and cannot

strictly be interpreted as structural. In contrast, VAR-based impulse response estimates suf-

fer from a well-known bias. Our proposed solution to these issues in practical applications is

to simply take all of these concerns at face value and compute combined responses that take

these trade-offs into account. Our use of prediction pools provides a systematic and compu-

tationally tractable method to account for these issues in a wide range of applications, where

the focus is on identifying plausible and robust dynamic behavior over time, irrespective of

the underlying models.

A key strength of our approach is its flexibility. In particular, it removes the necessity

to choose one model or even one statistical paradigm. Moreover, the methodology is appli-

cable to a wide range of models. Typical methods such as Bayesian model averaging are

1Opinion pools, i.e., a forecast density formed by averaging over model-specific forecast densities, were
first introduced by Stone (1961).
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unavailable when one of the estimators considered is based on LPs as LPs are not ‘generative

models’, that is, a set of LPs for different horizons do not form a consistent data-generating

process. Besides the aforementioned LPs and VARs, dynamic equilibrium models (Smets

and Wouters, 2007), dynamic factor models (Stock and Watson, 2016), or single equation

methods (Baek and Lee, 2022) can be used in our framework. In addition, our method

provides horizon- and variable-specific averages, thus exploiting each method’s strength as

much as possible.

As highlighted by Geweke and Amisano (2011), prediction pools have properties that

make them well-suited to average over models or estimators when it is clear that all included

models are misspecified. In contrast to Bayesian model averaging or related frequentist

methods, more than one model will generally receive a positive weight. This helps prediction

pools to outperform other model selection or model averaging approaches using various

measures of forecast accuracy. Our extension inherits these properties, as we demonstrate

with Monte Carlo exercises and with two applications that study the effects of U.S. monetary

policy shocks.

Prediction pools are also computationally straightforward to implement relative to al-

ternative methods of averaging across models. Since each model-specific forecasting density

can be obtained separately, the most-time consuming part of forming prediction pools can

be parallelized. The second step is then a relatively simple numerical maximization prob-

lem with a concave objective function and convex constraints. Other methods that also

combine information from various models such as mixture models or composite-likelihood

estimators (Qu, 2018; Canova and Matthes, 2021) do not share this modularity and thus

have substantially higher computational complexity.

Overall, our paper highlights several broad messages for estimating impulse responses.

The theoretical properties of individual models are not sufficient criteria for the choice of

optimal weights in the prediction pool. Misspecified models can dominate correctly specified

(or more flexible) models in finite samples. On the other hand, models that produce tighter

estimates need not receive greater weight. The choice of model and their weights depend on

the entire predictive distribution and not only the point estimates. While our examples focus

on the mean and variance, higher-order moments or any other properties of the predictive

distribution can be important more generally. Finally, we also find that the optimal weights

on models depend on horizon, variable, and application, making it difficult to derive general

guidelines or rules-of-thumb.

We illustrate our methodology using three Monte Carlo experiments. The first is a

stylized univariate example motivated by Herbst and Johannsen (2020), which serves as a

proof of concept and implies reasonable optimal weights. They result in an average impulse
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response with a bias similar to one chosen by minimizing a squared error criterion. The

second Monte Carlo compares a VAR and an LP in a setting where the VAR is misspecified,

but the LP produces noisier estimates and has finite sample bias that is of the opposite

sign from the VAR. While most of the weight is placed on the VAR, substantial weight is

also placed on the LP, reducing the bias of the averaged impulse response relative to the

VAR on its own, with the biases of the two models offsetting each other. The final Monte

Carlo simulates data from the DSGE model from Smets and Wouters (2007), illustrating

the weighting scheme’s ability to trade off bias and variance for a relatively realistic data-

generating process. These exercises highlight how our approach often gives positive weight

to all competing models, but is also consistent with previous theoretical results found in

Herbst and Johannsen (2020) and Li et al. (2022).

We then consider two empirical exercises. Our first application uses an instrument that

exploits high-frequency variation in asset prices around monetary policy decisions (Gertler

and Karadi, 2015; Caldara and Herbst, 2019). The second application follows Ramey (2016),

where we average across four models that use the same Romer and Romer (2004) narrative

instrument for monetary shocks. We find a range of results depending on application, hori-

zon, and variable, emphasizing the flexibility of our methodology and the importance of

considering the full predictive distribution rather than individual statistics. In addition, we

find cases where the averaged impulse response delivers an economic message that is different

and often more plausible than any of the individual models.

Related Literature. Our approach is motivated by the vast array of choices for com-

puting impulse responses available to practitioners. It is designed to allow researchers to

average optimally across multiple approaches rather than choosing just one. The two main

statistical models are VARs (Sims, 1980) and LPs (Jordà, 2005), which we focus on in our

Monte Carlos and applications. Within these two classes of models there are numerous

variations. For example, in VARs inference can be conducted using Bayesian or frequen-

tist methods (Sims and Zha, 1999). The Bayesian approach requires the choice of priors

(Doan et al., 1984; Del Negro and Schorfheide, 2004; Giannone et al., 2015) while the fre-

quentist approach requires choices about bias correction and the construction of confidence

intervals (Kilian, 1998; Pesavento and Rossi, 2006). With LPs, there is a growing literature

providing choices on the approach to inference (Herbst and Johannsen, 2020; Montiel Olea

and Plagborg-Møller, 2021; Lusompa, 2021; Bruns and Lütkepohl, 2022) and smoothing the

impulse responses (Barnichon and Brownlees, 2019; Miranda-Agrippino and Ricco, 2021a).

Having a general method that is flexible enough to cater to different models, variables,

and horizons is particularly useful given the range of conclusions in the literature about the
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relative strengths of the different methods. While there are asymptotic results on the relative

performance of VARs and LPs (Stock and Watson, 2018; Plagborg-Møller and Wolf, 2021),

the conditions for these theorems may not be easily verifiable in practice. In finite sample

settings, the literature has also compared the performance of VARs and LPs (Kilian, 1998;

Marcellino et al., 2006; Li et al., 2022). However, it is difficult to draw general conclusions,

especially in empirical applications when the true model is not known. Our Monte Carlos and

empirical applications show that the relative weights on different models can vary drastically

not only with the data but also by variable and horizon. We consider it therefore important

to rely on a general method that is able to assign weights variable by variable and horizon

by horizon.

Prediction pools have been used to average models since their introduction by Geweke

and Amisano (2011) and subsequent follow-up work in Geweke and Amisano (2012) and

Amisano and Geweke (2017). The methodology has been extended by Waggoner and Zha

(2012) and Del Negro et al. (2016) to assign time-varying weights. Our key innovation is

that prediction pools can be used to average impulse responses whereby we treat the impulse

responses as conditional forecasts. This allows for a flexible method that inherits desirable

properties of the original prediction pools.

Model averaging has a long tradition in economics, partially motivated by the observa-

tion that averages of forecasts across multiple models tend to outperform forecasts based on

an individual model (Bates and Granger, 1969). This is, in fact, one of the original motiva-

tions behind optimal prediction pools (Geweke and Amisano, 2011). Alternative averaging

methods exist in both Bayesian and frequentist frameworks. In the Bayesian setting, model

averaging is just another application of Bayes’ theorem (for an application to VARs, see, for

example, Strachan and van Dijk (2007)). As mentioned before, Bayesian model averaging

generally requires use of generative models and, as such, rules out the use of LPs. Fre-

quentist versions of model or forecast averaging such as Hansen (2007) also focus on specific

classes of models (averages of least squares estimators in that case). Hansen (2016) studies

model combination of various restricted VARs estimated via least squares. He proposes to

find optimal model weights to minimize the mean squared error of a function of the VAR

parameters (which can be an impulse response at a specific horizon).

Outline. The rest or the paper is structured as follows. Section 2 introduces our methodol-

ogy. Section 3 describes our three Monte Carlo exercises. In Section 4, we apply our method

to study the response of various macroeconomic aggregates to monetary shocks identified by

the instruments from Gertler and Karadi (2015) and Romer and Romer (2004). Section 5

concludes.
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2 Prediction Pools

We use prediction pools to average impulse responses across different models, based on

Geweke and Amisano (2011). In their framework, predictive densities p (zt+h|X t
m;Mm) for

each modelMm are combined to create a predictive density for an observable zt conditional

on model-specific predictive variables X t
m, from which objects of interest, such as forecasts,

can be computed.2 The individual predictive densities are taken as given; that is, in contrast

with other approaches to model averaging such as the estimation of mixture models, the

parameters of the specific models and the model weights are not estimated jointly.

Formally, for any given horizon h, the goal is to maximize the log predictive score function:

max∑M
m=1 wm,h=1,wm,h≥0

T∑
t=1

log

[
M∑

m=1

wm,hp
(
zt+h|X t

m;Mm

)]
, (1)

where zt+h denotes the variable of interest, X t
m denotes the history of variables that zt+h

depends on in model Mm, and m = 1, ...,M indexes different models. The framework can

be extended to the multivariate case, where zt+h can be a vector of observables, but for ease

of exposition and in our empirical setting later on we find it useful to focus on one variable

at a time.3

2.1 Adapting Prediction Pools to Impulse Response Averaging

Prediction pools generally improve forecasting ability relative to individual models as judged

by the log predictive score (Geweke and Amisano, 2011, 2012). They do so by usually giving

more than one model a positive weight, in contrast with posterior model probabilities in a

Bayesian setting.

We leverage the useful properties of prediction pools for the problem of impulse response

estimation using the insight that impulse responses are nothing but conditional forecasts.

2Subscripts generally denote period-specific outcomes (except for the subscript m, which denotes the
model at hand), whereas superscripts denote histories up to and including the period specified in the super-
script.

3We treat the computation of the weights at different horizons as distinct problems. One could, alterna-
tively, compute weights jointly and impose a penalty that forces the changes in the weights across horizons to
be smoother than in our benchmark. For example, one could estimate the sets of weights {{wm,h}Mm=1}Hh=1

by maximizing the following objective function:

max∑M
m=1 wm,h=1,wm,h≥0

H∑
h=1

T∑
t=1

log

[
M∑

m=1

wm,hp
(
zt+h|Xt

m;Mm

)]
+ λ

H∑
h=2

M∑
m=1

(wm,h − wm,h−1)2,

where λ controls how much smoother the weights will be relative to our benchmark. With λ = 0, we replicate
our benchmark since then each horizon’s weights can be solved for independently of all other horizons.
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The impulse responses in our framework are averages of model-specific impulse response

estimators.4 Our approach thus rewards models that forecast well.

The primitives that we need for our approach are forecasting densities based on each

model. Where we differ from Geweke and Amisano (2011) is that we use a measure of

the shock of interest as a conditioning argument in our predictive densities. In general, we

form forecast densities that depend on observables up to time t − 1 and a measure of the

structural shock at time t. These measures of shocks can depend on time t data and model

parameters. They can also incorporate identification restrictions, as will become clear in

our examples. Whereas the forecasting densities used in Geweke and Amisano (2011) and

other papers that use prediction pools make no explicit use of identified shocks or specific

identification schemes for these shocks, incorporating these in our approach allows us to

discriminate between models with different identification schemes.5

This conditioning scheme makes our approach more relevant for the empirical practice

and choices that researchers are facing. An alternative approach would be to use the Geweke

and Amisano (2011) approach for different reduced-form models directly and then impose

identifying restrictions ex-post after finding the optimal weights. However, many applica-

tions of LPs directly use information on structural shocks (or instruments thereof) in the

estimation, making this alternative less appealing when at least one of the models in our

pool is based on LPs.

Another distinctive component of our approach is how we implement the distribution

over each model’s parameters, i.e., how our forecasting densities incorporate parameter un-

certainty within a model. Geweke and Amisano (2011) use two approaches: Either the

posterior distribution of parameters from a Bayesian estimation or, alternatively, fixed pa-

rameter values from some point estimate. We use a more general framework where the

parameters of model Mm are collected in a vector Ωm. We generate draws from a distri-

bution pm(Ωm) that captures the parameter uncertainty we want to consider. This could

be a posterior distribution, a point mass, a prior distribution, or a distribution derived us-

ing frequentist principles, say by appealing to standard asymptotic arguments or numerical

approaches such as the bootstrap.

We generally study a vector yt of macroeconomic variables and denote the jth variable of

that vector by yt,j. Since LPs are usually estimated for one specific variable and horizon at

a time, we carry out our analysis variable by variable and horizon by horizon as well. This

also gives us additional flexibility as different models might yield better forecasting ability

4Our focus on this paper is on linear models, but our approach could also be used in nonlinear settings.
5For the different identification schemes to be comparable, we are implicitly assuming that they are indeed

identifying the same shock.
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for different variables or horizons.

With these definitions in hand, we define our forecasting density for model m, p∗m:

p∗m (yt+h,j) =

∫
p
(
yt+h,j|yt−1, εt(Ωm, y

t),Ωm,Mm

)
pm(Ωm)dΩm, (2)

which replaces the forecasting densities p (zt+h|X t
m;Mm) in Equation (1). We can approx-

imate the integral on the right-hand side by Monte Carlo methods, as is often necessary

in practice. We can extend our definition of p∗ by allowing different models to depend on

different right-hand side variables. While we allow the shock measure εt(Ω, y
t) to be model-

specific, in our applications we use the same shock (or instrument of a shock as a conditioning

argument) in all models and assume that the observed shock is one element of the vector yt.

Geweke and Amisano (2011) use true out-of-sample forecasting densities, i.e., their den-

sities p (zt+h|X t
m;Mm) are generally re-estimated every period. While this is possible in our

framework as well, we use an alternative approach inspired by cross validation. In particular,

we split the sample in half and estimate the models for each subsample separately. We then

use the implied out-of-sample forecasting densities for the parts of the sample that were

not used for estimation to obtain model weights. More specifically, we first estimate each

model using the first half of the sample, and then use those parameter estimates to forecast

the second half. In the next step, we estimate using the second sub-sample, fix parameter

estimates and forecast the first subsample. This produces two true out-of-sample forecast

densities without having to re-estimate every period. We view this approach as trading off

computing time and overfitting concerns, which would play a role if we did not split the

sample at all.6

2.2 Properties of Prediction Pools

With forecasting densities (2) in hand, the theorems stated in Geweke and Amisano (2011)

all apply. In particular, as long as the expected average forecast densities do not take on

the same value for different models, the true model, should it be contained in the set of

models we consider, asymptotically receives a weight of 1. In contrast to Bayesian model

averaging, more than one model will receive positive weight even asymptotically if the true

model is not contained in the set of weights (Geweke and Amisano, 2012). The individual

model with the highest log predictive score might not even receive a positive weight in the

6We could extend our approach to allow for time-varying weights along the lines of Waggoner and Zha
(2012) or Del Negro et al. (2016).

8



optimal pool if there are more than two models being considered.7 Furthermore, the weights

satisfy a number of consistency requirements that make their use appealing. We state these

consistency requirements as derived by Geweke and Amisano (2011) in Appendix B.

We consider the prediction pool framework as particularly well suited for applications

in empirical macroeconomics. First, by studying each horizon separately, we overcome the

issue that LPs are not generative models. In particular, there is no unique way to simulate

a sample of arbitrary length from LPs estimated using different horizons. The simulation

from one horizon is in general inconsistent with simulations from LPs for a different hori-

zon. As a result, Bayesian model averaging is not possible. Second, prediction pools allow

us to compare Bayesian and frequentist approaches. In particular, the probability distri-

bution pm(Ωm) can be either Bayesian (i.e., a posterior distribution) or frequentist (i.e., an

asymptotic distribution).8 Finally, solving the optimization problem (1) is computationally

straightforward.

2.3 Implementation

We now present a step-by-step guide that summarizes our approach.

1. Split the estimation sample in half, so that each subsample has T/2 observations (we

assume for simplicity that T is even). We denote the subsample by s = 1, 2, where

s = 1 means that periods dated t = 1, ...T/2 are used in the estimation, whereas s = 2

means that periods t = T/2 + 1, ..., T are used. In a slight abuse of notation, we define

a function s(t) that is equal to 1 if t ≤ T/2 and equal to 2 if t > T/2. We now give

densities additional superscripts that denote the estimation sample.

2. Estimate (or calibrate) each model m = 1, ...,M for each subsample s. This means

that for each model we get a distribution psm(Ωm) for each subsample. This is the most

time-consuming step of the algorithm, but can be easily parallelized.

3. For each model and subsample construct p∗,sm (yt+h,j) by first constructing the forecast

density conditional on parameters and a given shock (see Section 2.4 for an example

7The pooling weights thus do not necessarily represent a ranking or evaluation of the models. Rather,
the weights are chosen to optimize the performance of the averaged model in terms of the log-score objective
function.

8By allowing for both Bayesian and frequentist models to enter our model pool, we implicitly equate the
interpretations of uncertainty in Bayesian and frequentist frameworks. This is very much in the spirit of
much applied work, which compares error bands across Bayesian and frequentist approaches, disregarding
philosophical differences between the two approaches. Nevertheless, in our applications below, we do not
compare across paradigms.
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on how to do this in VAR models). Then average over draws from the relevant psm(Ωm)

density. This step can also be parallelized.

4. Compute model weights by solving the following maximization problem for each hori-

zon h and each variable j separately:

max∑M
m=1 w

j
m,h=1,wj

m,h≥0

T∑
t=1

log

[
M∑

m=1

wj
m,hp

∗,3−s(t)
m (yt+h,j)

]
(3)

The superscript of the density p
∗,3−s(t)
m clarifies that we use out-of-sample forecasts to

construct the objective function. Geweke and Amisano (2011) provide conditions for

the concavity of the objective function.

5. With model weights in hand, we can construct weighted averages of impulse responses

and other statistics of interest from each model.9

2.4 Illustrative example: Constructing p∗ for a VAR(1)

For concreteness, we now illustrate how to construct the forecasting density p∗m (yt+h,j) in

the context of a linear Gaussian VAR(1):

yt = Byt−1 + ut (4)

ut = Cεt, (5)

where εt ∼ N (0, I) is a vector of structural shocks and V [ut] = CC ′. In terms of the notation

from the previous section and assuming this VAR is model 1, we have Ω1 = [vec(B)′ vec(C)′]′,

where vec denotes columnwise vectorization of a matrix. The impulse response of yt to shock

i at horizon h is then BhC•,j, where C•,j is the jth column of the matrix C.

Given B and C, we can compute the on-impact conditional distributions:

E [yt | yt−1, εt,j] = Byt−1 + C•,jεt,j (6)

V [yt | yt−1, εt,j] = CC ′ − C•,jC ′•,j (7)

9Once we have obtained the model weights, we re-estimate each model using the entire sample to obtain
a final estimate of pm(Ωm) and use that distribution to construct our statistics of interest.
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and iterate forward:

E [yt+h | yt−1, εt,j] = BE [yt+h−1 | yt−1, εt,j] (8)

V [yt+h | yt−1, εt,j] = BV [yt+h−1 | yt−1, εt,j]B′ + CC ′ (9)

The predictive density of the vector yt conditional on parameters h periods ahead is then

Gaussian with conditional means and variances defined above. Furthermore, the fore-

casting distribution of a specific variable yt,j conditional on parameters and the shock is

given by a normal distribution where the mean and variance are the relevant elements of

E [yt+h | yt−1, εt,j] and V [yt+h | yt−1, εt,j].
With the internal instrument VAR, which we use in our Monte Carlos and empirical

applications in Sections 3 and 4, an econometrician observes the shock if she knows the

parameters. More generally, we replace εt,j with ε̂t,j, the jth element of ε̂t ≡ C−1(yt−Byt−1),
the fitted value of εt.

If B and C are estimated, we can account for parameter uncertainty by integrating over

their posterior or asymptotic distribution. We implement this by averaging the predictive

density across draws in a Bayesian framework, for example.

2.5 Extensions

We close our description of the methodology with a brief discussion of straightforward ways

to adapt or extend our approach to several common settings.

In many scenarios, macroeconomists use identification schemes that do not point identify

the structural shock of interest (such as in the case of sign restrictions in VARs). To accom-

modate such cases, we can enlarge the parameter vector Ωm for any model m, where the

structural shock is not point-identified, to include a parameter that selects one possible value

of the structural shock consistent with the other parameters of the model. In a VAR, this

would be a rotation matrix that maps the covariance matrix of the one-step ahead forecast

error into the matrix of impact impulse responses. While this parameter is by definition not

point identified, it does not conflict with our approach.

Similarly, it is numerically straightforward to accommodate models with nonlinearities

where the models are conditionally linear and Gaussian. Key examples are VAR models with

parameters that follow discrete (Sims and Zha, 2006) or continuous (Cogley and Sargent,

2005; Primiceri, 2005) Markov processes, where the respective innovations are independent

of other innovations in the model. In these cases, we need to enlarge the parameter vector

Ωm to include estimates of the time t state of the Markov process.
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Our approach typically gives larger weights to models that are better at forecasting the

series of interest at a given horizon. This forecasting ability can be due to the inclusion of

the structural shock or due to other features of each model. If a researcher wants to reward

models with a larger weight when the inclusion of the structural shock improves forecast

ability, the following alternative objective function could be used:

F (φ) =

[∑
t

∑
m

wmp
∗
m (yt+h,j)

]
︸ ︷︷ ︸

standard objective

+ φ

[∑
t

∑
m

wm (p∗m (yt+h,j)− pm (yt+h,j))

]
︸ ︷︷ ︸
reward for forecast improvement due to structural shock

,

where we define

pm (yt+h,j) =

∫
p
(
yt+h,j|yt−1,Ωm,Mm

)
pm(Ωm)dΩm (10)

as the forecast density based on model Mm when the structural shock is not used as a

predictive variable. The parameter φ governs how much the researcher rewards forecast

improvement due to the inclusion of a structural shock. For simplicity, we set φ = 0 and

ignore the forecast improvement from the structural shock, as is typical in most model

averaging in the literature. As a first pass to assess the viability of this modification, one

could also compare weights based on pm and p∗m.

3 Monte Carlo Simulations

We now present three Monte Carlo exercises to illustrate our methodology. First, we consider

a univariate example with two alternative models that produce consistent estimates but differ

in finite sample. Second, we consider a model in which the VAR is misspecified but the LP

produces consistent estimates. Third, we consider data simulated from a DSGE model, such

that both the VAR and LP are misspecified. We report biases and standard deviations of

our approach vis-a-vis individual models, following the common focus of the literature on

first and second moments. However, our approach targets the entire forecast distribution

and is not restricted to these moments.

3.1 AR(1)

As an initial proof of concept, we first consider the AR(1) Monte Carlo exercise from Herbst

and Johannsen (2020). We show that in this setting, our model averaging approach performs

close to optimally on a number of dimensions.
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Data-Generating Process. We generate data from the univariate model:

yt = ρyt−1 + et + vt (11)

where (et, vt)
′ iid∼ N (0, I). We take ρ = 0.97 and use T = 80 observations. We seek the

impulse response of yt to a shock et.

Models. We estimate models of the form:

yt+h = β(h)′
m xm,t + ε

(h)
m,t+h, (12)

and use our methodology to compare the two specifications for xt considered by Herbst and

Johannsen (2020):

• With controls: xm,t = (et, yt−1)
′.

• Without controls: xm,t = et.

Both specifications produce consistent estimates β
(h)
m,1 of the impulse response at horizon h.

However, the second specification does not control for lagged yt, resulting in differing finite

sample performances between models. Herbst and Johannsen (2020) show that the two

specifications produce different finite sample biases. The variances of the estimated impulse

responses also differ.

Results. Figure 1 shows the results averaged across 5 × 104 simulations. The weights

produced are intuitive and perform well on a number of dimensions. The top left panel

shows that optimal weights tend to favor the model with a smaller bias. The weights are

closer to 0.5 when the biases of the two models are closer.

The remaining panels show that the resulting mixture model performs well. First, the

bias of the mixture model is close to the optimum that one could get with each individual

model horizon by horizon. Second, the standard deviation of the mean estimate from the

mixture model is also close to the lower envelope of the two individual models.10 Third, we

compute the density of the true impulse response under each of the models in the lower left

panel.11 It shows that the average density is relatively high under the averaged model with

10We compute the standard deviation of the impulse responses for each Monte Carlo sample and then
average across all samples. Both the sample specific bias and standard deviation depend on the estimated
weights for that specific sample. The averages we report in our figure for the Monte Carlo experiments thus
take into account sample variation in the estimated weights.

11To be specific, we compute the model-specific predictive density evaluated at the true impulse response
and then average across Monte Carlo repetitions.
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Figure 1: Top left: Prediction pool and least-squares weights on model with controls; Top
right: Estimated impulse responses under each specification, averaged models, and true
model; Bottom left: Log average probability density of true impulse response under each
specification and averaged models; Bottom right: Standard deviation of point estimate
of impulse response estimates. Dashed lines correspond to individual models, solid lines
correspond to averaged models, and dotted line corresponds to true impulse response. All
plots show averages across all Monte Carlo repetitions.

optimal weights.

We also compare the results to optimal weights computed using a least-squares objective

function, which replaces the optimization problem in equation (3) with:

min∑M
m=1 wm,h=1,wm,h≥0

T−h∑
t=1

(
yt+h −

M∑
m=1

wmŷ
(h)
m,t+h

)2

, (13)

where ŷ
(h)
m,t+h = β

(h)′
m Xm,t is the fitted value of yt+h in model m. We use the same sample-

splitting scheme as with the prediction pool weights.

Even though the least-squares objective function targets the bias and the standard devi-

ation of the averaged point estimates, the prediction pool performs similarly on both these

measures. The prediction pool is thus able to obtain close to optimal point estimates accord-

ing to this least squares objective while taking into account the entire probability distribution
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for the estimated impulse response in each simulation. In situations where the forecasting

density is more complicated, this is not necessarily guaranteed to be true and weights based

on such a least squares objective could miss important features of the data.

3.2 Misspecified Shock

We now present an example in which the VAR is misspecified but the LP produces consistent

estimates. The example highlights how the weights trade off the flexibility of the LP and the

structure and relatively tighter estimates of the VAR. In addition, in finite sample the two

models produce impulse responses with biases of opposite signs, offsetting each other once

we average their impulse responses.

Data-Generating Process. We consider data generated from the model:

yt = ρyt−1 + v1,t + v2,t (14)

v2,t = γv2,t−1 + e2,t, (15)

where [
v1,t

e2,t

]
∼ N

([
0

0

]
,

[
1 0

0 1− γ2

])
and (ρ, γ) = (0.97, 0.75). Our parameterization ensures that the long-run variance of v2,t is

one, which is equal to the variance of v1,t.

We seek the impulse response of yt to a shock v1,t. Under the data-generating process,

the impulse response at horizon h is ρh. We obtain results from 1000 simulations of 500

periods each.

Models. The first model we use to estimate the impulse response is an internal instrument

VAR (Noh, 2018; Plagborg-Møller and Wolf, 2021):[
zt

yt

]
= B

[
zt−1

yt−1

]
+ ut, (16)

where zt is the shock of interest and ut is assumed to be independent over time. The

impulse response at horizon h is BhC•,1, where C is the lower triangular matrix satisfying

CC ′ = V [ut], obtained using a Cholesky decomposition.12 As before, C•,1 is the first column

12This is closely related to the VARX model from Bagliano and Favero (1999) and Paul (2020), where the
instrument is included as an exogenous variable in a VAR.
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Figure 2: Prediction pool weights, biases, and asymptotic standard deviations from Monte
Carlo with persistent shocks. Biases and standard deviations averaged across simulations.
Left: Optimal weights on LP; Middle: Bias of impulse responses; Right: Standard devia-
tion of impulse responses. All plots show averages across all Monte Carlo repetitions.

of C. We assume for simplicity that the shock is perfectly observed, i.e., zt = v1,t. We

estimate the model equation by equation using least squares, with standard errors computed

using the “wild” bootstrap (Gonçalves and Kilian, 2004).

The second model we consider is an LP:

yt+h = β(h)v1,t + γ(h)v v1,t−1 + γ(h)y y1,t−1 + ε
(h)
t+h. (17)

The estimated impulse response at horizon h is β(h). The model is estimated using least

squares, with White standard errors (Montiel Olea and Plagborg-Møller, 2021).

The two models face a bias-variance trade-off highlighted by Li et al. (2022). The VAR

(16) is misspecified because the autocorrelation of the shock ut is assumed to be zero. This

induces bias even asymptotically. The LP produces consistent estimates, with a finite sample

bias that vanishes as the sample size goes to infinity. However, the structure of the VAR

induces a smaller variance than the LP. Our averaging approach balances both considerations

while also taking into account the finite sample performance of each method.

Results. The results are summarized in Figure 2. While the majority of the weight is

placed on the VAR, there is substantial weight of up to almost 0.4 placed on the LP. The

weight on the LP peaks around h = 4, but remains above 0.2 for all horizons after impact.

By averaging the two models, we obtain an impulse response that has a lower standard

deviation and only slightly larger bias than the LP. Since the VAR and LP have biases of

opposite signs, averaging them tends to offset each other.13 In this case, the difference in

standard deviations leads to a larger weight on the VAR.

More generally, a correctly-specified or more flexible model need not dominate a mis-

13When we use weights from in-sample predictive densities instead of splitting the sample, we find that
the bias almost completely vanishes. See Figure A.2 in Appendix A
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specified model in finite sample. The finite sample performance of each model may not

correspond to their asymptotic behavior. Furthermore, these properties may differ across

impulse response horizon or the variable of interest. Our impulse response averaging ap-

proach flexibly accounts for these by constructing an optimal composite impulse response

variable by variable and horizon by horizon. Figure 2 also highlights the trade-off between

bias and standard deviation that is present in practically any model-averaging exercise (un-

less one model dominates both in terms of bias and standard deviation). Our approach

reduces the bias relative to the VAR, but does so by increasing the standard deviation.

However, our approach outperforms the individual models in terms of the log predictive

score by construction.

3.3 Medium-Scale New Keynesian Model

We next consider a Monte Carlo exercise with data generated from a quantitative dynamic

stochastic general equilibrium (DSGE) model to connect more closely to actual empirical

settings. We use a DSGE model as our data-generating process because it implies VARMA

(Vector Autoregressive Moving Average) dynamics for the vector of observables, so that both

models we consider, VARs and LPs, are misspecified. Despite using closely related models,

we find very different estimates in finite sample. The averaged impulse response balances

the bias-variance trade-off, and in some cases even has a smaller bias than either individual

model.

Data-Generating Process. We simulate data from the log-linearized medium-scale New

Keynesian model from Smets and Wouters (2007) with parameters fixed at the posterior

mode reported in the paper. We use the model to generate 150 periods of simulated data

for the seven observables used by Smets and Wouters (2007) to estimate the model: GDP

growth, consumption growth, investment growth, wage growth, hours, inflation, and the

federal funds rate. We will focus on the impulse response of each variable to a monetary

shock, which we assume to be observed by the econometrician. We obtain results across 200

simulations.

Models. We compare two models: an internal instrument VAR (16) estimated using

Bayesian methods, and the Bayesian LP (Miranda-Agrippino and Ricco, 2021a). The
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Bayesian LP estimates: [
zt+h

yt+h

]
= B(h)

[
zt

yt

]
+ u

(h)
t+h. (18)

for each horizon h > 0. The impulse response at horizon h is B(h)C•,1, where C•,1 is obtained

from (16). Miranda-Agrippino and Ricco (2021a) show how to impose a prior on the model

and estimate the LP impulse response analogously to a Bayesian VAR.14 Both models have

one lag and use the same Minnesota prior. In addition, we assume that the shock zt is

perfectly observed.

The two models are closely connected. First, if B(h) = Bh, then the VAR and LP produce

identical impulse responses. In particular, given the same priors, the two models would

produce identical on-impact impulse responses. Next, as pointed out by Plagborg-Møller

and Wolf (2021), under the appropriate regularity conditions, the two models asymptotically

produce identical impulse responses. However, as the Monte Carlo exercises will show, in

finite sample and under misspecification the two models can lead to substantially different

estimates despite their close connections, emphasizing the need for a systematic way to

average across models.15

Results. The weights, averaged across simulations, are summarized in the left panels of

Figure 3. Overall, the prediction pools place greater weight on the VAR, with the LP

typically getting a weight of 0.2 or less. The weight on the LP tends to fall at longer

horizons. Nevertheless, there are non-trivial weights on the LP, especially for inflation, the

federal funds rate, and hours.

The middle and right panels of Figure 3 plot the average biases and standard deviations

of the impulse response functions, providing an explanation for the small weights on the

LP. First, even though the LP has greater flexibility, in many cases its bias tends to be

larger or is at most of similar magnitude relative to the VAR. This arises partly due to

the relatively short sample of 150 periods. Second, the right panels show that the LP has

substantially larger posterior standard deviation, which is consistent with evidence reported

in the literature (Miranda-Agrippino and Ricco, 2021b; Li et al., 2022). The difference

14Miranda-Agrippino and Ricco (2021a) do not explicitly model autocorrelation in the residual of their
LP specification, but instead use a sandwich-type estimator for the posterior covariance matrix.

15There are two differences of note relative to Plagborg-Møller and Wolf (2021). First, because we impose
a prior, the estimated impulse responses at horizon h > 0 differ even if the least squares estimates are
equivalent. In particular, for longer horizons, the likelihood of the LP becomes more dispersed, bringing
the posterior closer to the prior. Second, the estimated system (18) differs from the LP setup used in
Plagborg-Møller and Wolf (2021).
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Figure 3: Prediction pool weights, biases, and posterior standard deviations from Smets
and Wouters (2007) Monte Carlo. Biases and standard deviations averaged across simula-
tions. Left: Optimal weights on LP; Middle: Bias of impulse responses; Right: Posterior
standard deviation of impulse responses. All plots show averages across all Monte Carlo
repetitions.

in standard deviations is especially large at longer horizons, which accounts for the lower

weights on the LP at those horizons.

To get a better sense of what is driving the weights, we focus first on the impulse response

for inflation. The weights on the LP are relatively high, especially in the initial quarters.

Correspondingly, we find that the LP estimates a response that has a smaller bias than

the VAR. Nevertheless, the VAR continues to receive more than half the weight because its

impulse response standard deviation is smaller. At longer horizons, the weight on the LP
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falls as the difference in biases shrinks while the difference in standard deviations increases.

The impulse response for hours further illustrates the behavior of the prediction pools.

The weights on the LP increases over the first four quarters but does not decay as quickly

as for other variables. Even though the standard deviations are similar initially, the LP

displays a substantially larger bias than the VAR at short horizons, reducing its optimal

weight. Subsequently, the LP and VAR have biases of opposite signs that offset each other

when averaged, as was the case in our previous Monte Carlo exercise. By averaging the

impulse responses, the prediction pool can produce an average impulse response that has

a smaller bias than either model, with the bias almost completely eliminated at horizon

h = 15. At longer horizons, the weights trade off two forces. First, the VAR bias begins to

increase while the LP bias begins to decrease. Second, the LP posterior standard deviation

increases while the VAR standard deviation remains relatively constant. In balance, the

weights begin to favor the LP less at longer horizons, but with a decline that is less steep

than in other variables.

Overall, the results here emphasize two key messages. First, the relative biases and

variances of the models differ depending on variable and horizon. Prediction pools offer

the flexibility to trade off these properties variable by variable and horizon by horizon, thus

making full use of the relative strengths of each model. Second, even when models have

similar asymptotic properties, there can be substantial gains from averaging over them in

finite sample. In particular, the bias of the average impulse response can in some cases be

lower than that of either individual model.

4 Empirical Applications

We now apply our methodology to estimating impulse responses to monetary shocks on actual

data. We consider two identification schemes, where we use external instruments that have

recently become popular in the macroeconomic literature, namely a high-frequency identifi-

cation instrument and a narrative instrument. These instruments have featured prominently

in many LP applications, but have recently also been used in VARs. In both applications

we consider a range of plausible empirical models in our prediction pools. Overall, our ap-

plications indicate that prediction pools offer a more plausibly accurate assessment of the

dynamic effects of monetary shocks as they optimally resolve the bias-variance trade-off,

especially when, as is likely, the underlying models are misspecified.
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4.1 High-Frequency Identification

The first empirical application uses a monthly VAR to study the effects of a monetary shock

using the high-frequency identification instrument from Gertler and Karadi (2015), similar

to Caldara and Herbst (2019). In particular, we use data on industrial production (IP),

unemployment, the producer price index for finished goods, the federal funds rate, and the

Baa corporate bond spread. We consider a sample with monthly data from March 1990

through November 2007. As in the Smets and Wouters (2007) Monte Carlo exercise, we

consider two models: a Bayesian internal instruments VAR and a Bayesian LP. We choose

12 lags for both models and use a Minnesota prior. The tightness parameter for the VAR

is selected to maximize the marginal likelihood, while the tightness parameter for the LP is

fixed at 1.16

Results. The empirical application results, shown in Figure 4, illustrate the importance

of computing the weights variable by variable and horizon by horizon, rather than having a

single weight for all variables and horizons. In particular, while almost all the weight for the

IP impulse response is placed on the VAR, the prediction pool places majority of the weight

on the LP at some horizons for each of the other variables. In addition, most of the variables

feature weights on the LP that range from zero to one depending on the horizon. These

results extends the typical finding that relative forecast performances depend on variable

and horizon to our particular interpretation of impulse responses and conditional forecasts.

The large weights attached to the LP for certain variables and horizons contrasts with

the Smets and Wouters (2007) Monte Carlo, where the average weights were never much

above 0.5. This reiterates the message that the relative performance of each model depends

on the setting, including the data-generating process and sample size.

The impulse response of unemployment provides one example of how the averaged impulse

response may be qualitatively different than each individual model. The prediction pool

places approximately equal weight on the LP and VAR after the three-year horizon. The

resulting averaged impulse response has a peak response from unemployment approximately

two-and-a-half years after the shock that subsequently reverts to zero, in contrast to the

persistent negative and positive responses from the LP and VAR, respectively.

There are also cases where we find intuitive reasons for more uneven weights. For example,

in the IP impulse response, the prediction pool places almost all the weight on the VAR.

The average impulse response thus displays a persistent decline in the level of IP in response

16The prior for the LP is chosen to be flatter than in the VAR because the likelihood for the LP is
dominated by a Minnesota prior with tightness parameter matching the VAR. A tightness parameter of 1
provides some shrinkage while allowing the data to speak.
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Figure 4: Prediction pool weights, posterior mean, and posterior standard deviation from
high-frequency identification empirical application. Left: Optimal weights on LP; Mid-
dle: Posterior mean of impulse responses; Right: Posterior standard deviation of impulse
responses.

to a contractionary monetary shock. This is closer to predictions from economic theory than

the persistent positive response that the LP finds.

An intermediate case is the impulse response for the federal funds rate at long horizons.

Here the LP is favored but the VAR continues to receive a nontrivial weight. The resulting

point estimate is positive, but with a large standard deviation. Once again, the averaged

impulse response is arguably more reasonable than each individual response. Relative to the

LP, the averaged impulse response has a mean that is slightly closer to zero. Unlike the VAR

that produced a relatively tightly estimated negative response, the averaged response has a

large standard deviation.

As in the Monte Carlo exercises, we see benefits to averaging the impulse responses using

prediction pools. The averaged impulse responses are more plausible than either the LP or

the VAR. Even more than the Monte Carlos, the flexibility of the prediction pools is critical,

with the weights varying dramatically across variables and horizons.

22



4.2 Narrative Instrument

Our second empirical application follows the study of the Romer and Romer (2004) shocks

in Ramey (2016). In particular, we use monthly data on the log of IP, the unemployment

rate, the log of the CPI, the log of a commodity price index, the federal funds rate, and the

Romer and Romer (2004) instrument for March 1969 through December 1996.

We consider four models, each estimated using frequentist methods:

1. Cholesky VAR. Following Coibion (2012), we estimate a VAR with the log of IP,

the unemployment rate, the log of the CPI, and the log of the commodity price index

in the first block, followed by the cumulated Romer and Romer (2004) instrument

ordered last. The monetary shock is assumed to be the last shock from a Cholesky

decomposition.

2. Internal Instrument VAR. We estimate a VAR with the Romer and Romer (2004)

instrument as the first variable, followed by the log of IP, the unemployment rate, the

log of the CPI, the log of the commodity price index, and the federal funds rate. The

monetary shock is assumed to be the first shock from a Cholesky decomposition.

3. LP With Recursiveness Assumption. We follow Ramey (2016) and estimate

regressions of the form

zt+h = αh + θh · shockt + control variables + εt+h, (19)

where zt+h is the variable of interest, shockt is the Romer and Romer (2004) instrument.

The control variables include lags of the Romer and Romer (2004) shock, the log of

IP, the unemployment rate, the log of the CPI, the log of the commodity price index,

and the federal funds rate, as well as contemporaneous values of the log of IP, the

unemployment rate, and the log price indices to preserve the recursiveness assumption,

as in the Cholesky VAR.

4. LP Without Recursiveness Assumption. This is identical to the LP with the

recursiveness assumption, except that we do not control for contemporaneous variables.

This makes the assumption that the Greenbook forecasts used by Romer and Romer

(2004) already include all information used by the Fed for setting interest rates.

Following Ramey (2016), both VARs use twelve lags and both LPs use two lags. In principle,

all four models estimate the same impulse response using the same instrument. However, the

models make different identifying assumptions, include different controls, and have different
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Figure 5: Prediction pool weights, posterior mean, and posterior standard deviation from
narrative identification empirical application. Left: Optimal weights on LP; Middle: Pos-
terior mean of impulse responses; Right: Posterior standard deviation of impulse responses.

numbers of lags. Importantly, this means that unlike the previous application, the LPs do

not nest the VARs here.

Results. The results are summarized in Figure 5. In general, majority of weight is placed

on the LPs on impact, while the VARs get assigned greater weight at longer horizons. This

is similar to the Smets and Wouters (2007) Monte Carlo and differs from the high-frequency

instrument application in Section 4.1. However, unlike the Smets and Wouters (2007) Monte

Carlo, the relative weights are arguably not tightly connected with the respective standard

deviations. In particular, the internal instrument VAR receives a large weight even though

it generally has a higher variance than the Cholesky VAR and a similar variance to the LP

without the recursiveness assumption.

The impulse response for IP yields two interesting observations. First, at the one- to

three-year horizon, the prediction pool places majority of the weight first on the internal

instrument VAR then the recursive LP, yielding a deeper and more prolonged contraction

in response to the identified shock than implied by the Cholesky VAR. The fact that the

latter is not favored despite its lower variance suggests that the average impulse response
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provides a better fit to the data. However, after three years, the Cholesky VAR becomes

heavily weighted, implying a rebound in IP rather than a convergence back to trend.

The weights for the unemployment and CPI impulse responses are mostly on the internal

instrument VAR. One notable exception is unemployment at the long horizon. Like IP, the

weights favor the Cholesky VAR and are associated with a rebound in economic activity,

with unemployment undershooting its trend.

The average impulse response for commodity prices is fairly noisy, with substantial weight

placed on the LPs after the three-year horizon. This results in a high variance at those

horizons. In particular, the variance of the averaged impulse response is higher than any of

the individual responses at the four-year horizon. Given the volatility of commodity prices,

it is plausible that the data are not informative about their response to the identified shock.

As a result an impulse response with high variance may fit the data best from the standpoint

of the log predictive score function, which accounts for the full predictive density rather than

just the point estimates.

The above results stress the fact that prediction pools utilize the predictive density and

not only particular moments of the estimated impulse responses. While tighter estimates

may reduce mean-square error, they need not increase the log predictive score function (3).

The prediction pool not only favors models whose fit to the data sufficiently dominate the

rest of the pool, but may even favor a large variance if prediction is, in fact, difficult.

As a final exercise, we drop the Cholesky VAR from the set of models and repeat the

exercise. The results are shown in Figure 6. The main observation is that the weight that

was previously on the Cholesky VAR primarily gets transferred to the internal instrument

VAR, which is the closest model. The averaged impulse responses remain relatively similar

to the exercise with all four models, illustrating the consistency of the weights assigned as

we change the set of models (see Appendix B for details).

5 Conclusion

In this paper, we develop a methodology that delivers an encompassing approach to com-

puting dynamic responses of macroeconomic variables to shocks. A fundamental challenge

for empirical researchers is the choice of a specific model for such an exercise since it is well

known that they come with their own issues such as bias or large standard errors. Based

on the idea of prediction pools, as in Geweke and Amisano (2011), we show how to average

across impulse responses from multiple models. Our framework thus presents an approach

to incorporate evidence from a variety of models in a consistent and plausible manner to get

closer to the actual truth in real economic data.
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Figure 6: Prediction pool weights, posterior mean, and posterior standard deviation from
narrative identification empirical application. Left: Optimal weights on LP; Middle: Pos-
terior mean of impulse responses; Right: Posterior standard deviation of impulse responses.

General theorems about which class of models should be used in empirical macroeco-

nomics are hard to come by once we make realistic assumptions. This has led to many

alternative impulse response estimators coexisting in the literature. We exploit that each of

these can be useful in particular situations, making empirical macroeconomics an ideal set-

ting to exploit flexible model-averaging schemes. Our prediction-pool based approach makes

model-averaging in these scenarios possible.

The key differences relative to existing methods are (i) much greater flexibility, which al-

lows us to use, for example, estimators based on different statistical paradigms; (ii) relative

small computational burden especially since the most time-consuming task can be paral-

lelized; and (iii) ability to exploit each method’s strength as much as possible by computing

horizon- and variable-specific weights based on predictive densities instead of a few selected

statistics.

Overall, our Monte Carlos and empirical applications highlight several broad messages

for estimating impulse responses:

1. The optimal weights on models depend on horizon, variable, and application.
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2. The choice of model depends on the entire predictive distribution, not only the point

estimates. Our examples focus on the mean and variance, but skewness, kurtosis, or

any other property of the predictive distribution could be important more generally.

3. Theoretical properties of individual models are not sufficient criteria for the choice of

weights. For instance, misspecified models may dominate correctly specified (or more

flexible) models in finite sample. On the other hand, models that produce tighter

estimates need not receive greater weight.

Our use of prediction pools provides a systematic and computationally tractable way to

account for these issues in a wide range of applications.

The flexibility of our methodology raises the possibility of numerous applications beyond

what we have explored here. For example, our approach can also be extended to average

across different identification schemes for the same shock (for example, studying the effects

of monetary policy shocks using a VAR identified with sign restrictions and a VAR identified

using an instrument). Furthermore, one could envision using our approach to discriminate

between various equilibrium models that encode different transmission mechanisms for the

shock of interest.
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A Supplementary Figures
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Figure A.1: Posterior mean estimates of impulse response to monetary policy shock in New
Keynesian model Monte Carlo, average across simulations. GDP, consumption, investment,
and wages in growth rates.
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Figure A.2: Prediction pool weights, biases, and asymptotic standard deviations from Monte
Carlo with persistent shocks, without sample splitting. Biases and standard deviations aver-
aged across simulations. Left: Optimal weights on LP; Middle: Bias of impulse responses;
Right: Standard deviation of impulse responses.
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B Theoretical Results of Geweke and Amisano (2011)

In this section we state major theoretical results from Geweke and Amisano (2011) for the

sake of completeness. Let us first explicitly state our objective function:

fT (wh) = max∑M
m=1 wm,h=1,wm,h≥0

T∑
t=1

log

[
M∑

m=1

wm,hp
∗
m (yt+h,j)

]
(A.1)

where wh = [w1,h w2,h · · ·wM,h]′ is the vector of model weights for a given horizon h (and a

given variable j, which we have not made explicit in this notation). We will generally assume

that fT (wh) is concave, i.e., ∂2fT/∂wh∂w′h is negative definite. For the case of two models

(M = 2), Geweke and Amisano (2011) show that that the objective function will be concave

if the expected difference between the two predictive densities will not be zero as the same

size increases.17 We will call a subset of models dominant if its weights sum to 1. A subset

of models is excluded if each of those models has a weight of 0. With the assumption of

concavity, Geweke and Amisano (2011) show the following results:

1. If {M1, . . . ,Mm} dominates the pool {M1, . . . ,Mn} then {M1, . . . ,Mm} dominates

{M1, . . . ,Mm,Mj1 , . . . ,Mjk} for all {j1, . . . , jk} ⊆ {m+ 1, . . . , n}.

2. If {M1, . . . ,Mm} dominates all pools {M1, . . . ,Mm,Mj} (j = m + 1, . . . , n) then

{M1, . . . ,Mm} dominates the pool {M1, . . . ,Mn}.

3. The set of models {M1, . . . ,Mm} is excluded in the pool {M1, . . . ,Mn} if and only

if Mj is excluded in each of the pools {Mj,Mm+1, . . . ,Mn} (j = 1, . . . ,m).

4. If the modelM1 is excluded in all pools (M1,Mi) (i = 2, . . . , n) thenM1 is excluded

in the pool (M1, . . . ,Mn).

17Note that even in the case of LPs and VARs with the same right-hand side variables, it is unlikely (at
least at larger horizons) that the implied predictive densities are the same even though the VAR specification
is nested in LPs.
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